

WORKSHOP ON BIOSENSORS & ELECTROANALYTICAL TECHNIQUES

Electrochemical Impedance Spectroscopy:

Experiments using Rotating Disc Electrode (RDE)

Date :27th June 2023

Simple electron Transfer Reactions

$$\begin{bmatrix} Fe(CN)_6 \end{bmatrix}^{4-} \rightleftharpoons \left[Fe(CN)_6 \right]^{3-} + e^{2t}$$

$$rate = k_f \left[Fe^{2t} \right] - k_r \left[Fe^{3t} \right]$$

$$k_f = k_f^0 e^{b_f E_{dc}} \qquad k_r = k_r^0 e^{b_r E_{dc}}$$

$$b_f = \frac{nF\alpha}{RT} \qquad b_r = \frac{-(1-\alpha)nF}{RT}$$

Working Electrode: Gold Disc

Reference Electrode: Ag/AgCl, Cl⁻ (Sat. KCl)

Counter electrode: Pt Mesh

Electrolyte : 5 mM potassium Ferrocyanide + 5 mM

potassium Ferricyanide

Any electrochemical reaction rate is

Supporting Electrolyte: 0.1 M Na₂SO₄

$$rate = f\left(T, E_{dc}, Conc.\right)$$

Electrochemical Studies using Rotating Disc Electrode

Potential (V vs Ag/AgCl,Cl⁻ (Sat.KCl))

Impedance Experiments with stationary Electrode

Impedance Experiments with Rotating Electrode

Boundary layer Thickness with rotation speed

Distance from the electrode surface

INFINITE AND FINITE WARBURG

Infinite Warburg

W \hat{Z}_W jω

Finite Warburg $Z_{w-o} = \frac{W}{\sqrt{j\omega}} \tanh\left(B\sqrt{j\omega}\right)$ $B = \frac{\delta}{\sqrt{D}}$

WORKSHOP ON BIOSENSORS & ELECTROANALYTICAL TECHNIQUES

Cyclic Voltammetry and Amperometry

Date: 27th June 2023

Electrochemical response of dopamine (DA) on MWCNTs and MWCNTs filled with ACN

CV response of 3 mM DA in pH 4 solution at GCE, GCE-MWCNTs, and GCE-MWCNTs-ACN at a scan rate of 50 mV s⁻¹

Kinetic study

Randles-Sevcik equation

$$i_{peak} = (2.69 \text{ x } 10^5) \text{ n}^{3/2} \text{A C } D^{1/2} \text{ v}^{1/2}$$

where:

- A Electrode surface area (cm^2)
- C Bulk concentration of the analyte (mol/cm³)
- n Number of electrons transferred in every species
- v Scan rate (V/s)
- D Diffusion coefficient of the oxidized analyte (cm²/s)

Effect of Scan rate towards electrochemical Sensing of Dopamine using GCE/MWCNTs

Linear plots: (A) i_p vs. v; (B) i_p vs. $v^{1/2}$; (C) $\log i_p$ vs. $\log v$

Effect of Scan rate towards electrochemical Sensing of Dopamine using GCE/MWCNTs-ACN

Linear plots: (A) i_p vs. v; (B) i_p vs. $v^{1/2}$; (C) log i_p vs. log v

Sensitivity Study

 $LOD = \frac{3 \times SD_{blank}}{Slope}$ Std. Deviation = 0.37265 Slope = 0.423 Sensitivity = 0.423 µA / µM LOD = 2.6 µM

Amperometric responses of DA in pH 4 phosphate buffer solution using GCE/MWCNTs-ACN. E = 0.55 V (Inset plot: calibration plot of current vs. concentration of DA).

Effect of varying contact area for conductance and conductivity

With contact area= 56 cm² With contact area= 43 cm² 0.6 0.6 0.5 0.5 **(a)** 1 Hz **(b)** 1 Hz 0.4 0.4 C - 0.3 100 Hz 100 Hz 0.2 190 kHz 0.2 190 kHz 0.1 0.1 0.0 0.0 0.5 0.0 0.1 0.2 0.3 0.4 0.6 0.5 0.1 0.2 0.3 0.4 0.0 0.6 Z'/Ω Z'/Ω

Fig. 1 Nyquist plots of Nafion ®-212 sandwiched between graphite blocks

Impedence for N-212 = $0.129 \ \Omega$ **Impedence for N-212** = 0.090Ω As $RA = \varphi L$ As $\mathbf{RA} = \boldsymbol{\varphi}L$ $0.090*56 = \varphi * 0.0050$ $0.129*43 = \varphi * 0.0050$ $\varphi = 1012.5 \ \Omega \ \mathrm{cm}$ $\varphi = 1017.95 \ \Omega \ \mathrm{cm}$ Conductance (G) = 0.01 mSConductance (G) = 0.007 mSConductivity (k) = 1 $mS \ cm^{-1}$ Conductivity (k) = 1 mS cm⁻¹ 30 30 25 25 **(b) (a)** 1 Hz **1 Hz** 20 20 $Z'' / \Omega cm^2$ -Z" / Ω cm² 15 100 Hz 15 **100 Hz** 10 190 kHz 190 kHz 10 20 25 30 5 15 25 10 20 30 5 15 $Z' / \Omega cm^2$ $Z' / \Omega cm^2$

Fig. 2 Nyquist plots of Nafion ®-212 sandwiched between graphite blocks.

Resistance, $\mathbf{R} = \boldsymbol{\varphi} \mathbf{L}/\mathbf{A}$ Where R= resistance of conductor, L= length of conductor, A=crosssectional area of conductor, $\boldsymbol{\varphi}$ = resistivity of material. Conductance (G) $\mathbf{G} = \mathbf{1}/\mathbf{R}$ Conductivity (*k*) $\mathbf{k} = \mathbf{1}/\boldsymbol{\varphi}$

Fig. 3 (a) Cell set-up to measure impendence of Nafion®-212.

Conclusion:

In summary, conductance will vary with the change of length and cross-sectional area of the conductor, but conductivity is the intrinsic property of the material, will remain same.

THANK YOU